Convert categorical variable into indicator variables

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html

import seaborn as sns
import pandas as pd

df = sns.load_dataset('penguins')
df
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 Male
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 Female
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 Female
3 Adelie Torgersen NaN NaN NaN NaN NaN
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 Female
... ... ... ... ... ... ... ...
339 Gentoo Biscoe NaN NaN NaN NaN NaN
340 Gentoo Biscoe 46.8 14.3 215.0 4850.0 Female
341 Gentoo Biscoe 50.4 15.7 222.0 5750.0 Male
342 Gentoo Biscoe 45.2 14.8 212.0 5200.0 Female
343 Gentoo Biscoe 49.9 16.1 213.0 5400.0 Male

344 rows × 7 columns

pd.get_dummies(df, columns=['sex'])
species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex_Female sex_Male
0 Adelie Torgersen 39.1 18.7 181.0 3750.0 False True
1 Adelie Torgersen 39.5 17.4 186.0 3800.0 True False
2 Adelie Torgersen 40.3 18.0 195.0 3250.0 True False
3 Adelie Torgersen NaN NaN NaN NaN False False
4 Adelie Torgersen 36.7 19.3 193.0 3450.0 True False
... ... ... ... ... ... ... ... ...
339 Gentoo Biscoe NaN NaN NaN NaN False False
340 Gentoo Biscoe 46.8 14.3 215.0 4850.0 True False
341 Gentoo Biscoe 50.4 15.7 222.0 5750.0 False True
342 Gentoo Biscoe 45.2 14.8 212.0 5200.0 True False
343 Gentoo Biscoe 49.9 16.1 213.0 5400.0 False True

344 rows × 8 columns