import pandas as pdWrite to different format with pandas
pandas
df = pd.read_csv('rates.csv')
df.head()| Time | USD | JPY | BGN | CZK | DKK | GBP | CHF | |
|---|---|---|---|---|---|---|---|---|
| 0 | 2024-04-16 | 1.0637 | 164.54 | 1.9558 | 25.210 | 7.4609 | 0.85440 | 0.9712 |
| 1 | 2024-04-15 | 1.0656 | 164.05 | 1.9558 | 25.324 | 7.4606 | 0.85405 | 0.9725 |
| 2 | 2024-04-12 | 1.0652 | 163.16 | 1.9558 | 25.337 | 7.4603 | 0.85424 | 0.9716 |
| 3 | 2024-04-11 | 1.0729 | 164.18 | 1.9558 | 25.392 | 7.4604 | 0.85525 | 0.9787 |
| 4 | 2024-04-10 | 1.0860 | 164.89 | 1.9558 | 25.368 | 7.4594 | 0.85515 | 0.9810 |
df.to_excel('rates_backup.xlsx')import sqlite3
from datetime import datetime
con = sqlite3.connect("rates_backup.db")
now = datetime.utcnow().strftime('%Y-%m-%d_%H-%M-%S')
df.to_sql(f'rates_backup_at_{now}.sql', con=con)62
df.to_json('rates_backup.json')